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Numerical experiments are described that illustrate some important features of the
performance of moving mesh methods for solving one-dimensional partial differen-
tial equations (PDEs). The particular method considered here is an adaptive finite
difference method based on the equidistribution of a monitor function and it is one of
the moving mesh methods proposed by W. Huang, Y. Ren, and R. D. Russell (1994,
SIAM J. Numer. Anal.31 709). We show how the accuracy of the computations is
strongly dependent on the choice of monitor function, and we present a monitor
function that yields an optimal rate of convergence. Motivated by efficiency consid-
erations for problems in two or more space dimensions, we demonstrate a robust
and efficient algorithm in which the mesh equations are uncoupled from the physical
PDE. The accuracy and efficiency of the various formulations of the algorithm are
considered and a novel automatic time-step control mechanism is integrated into the
scheme. c© 2001 Academic Press
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1. INTRODUCTION

Many evolutionary problems involving linear or nonlinear partial differential equations
(PDEs) have solutions with sharp transitions such as boundary layers or steep wave fronts.
Over the past decade it has generally been accepted, at least for problems in one space
dimension, that adaptive or moving mesh methods are capable of resolving the sharp transi-
tions to acceptable degrees of accuracy without using an excessive number of mesh points.
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The methods, by continuously relocating the mesh points to follow features of the computed
solution, provide an ideal adaptive strategy for solving problems of this type. Moving mesh
methods use nonuniform spatial meshes and, as time evolves, they concentrate the grid in
spatial regions of high activity. A useful approach in adaptive schemes is the concept of
equidistribution, which seeks to distribute some function (referred to as the monitor func-
tion) uniformly over the domain of the problem. The adaptive methods considered in this
paper are based on equidistribution, and the monitor function is taken to be a measure of
the local solution variation.

There has been an extensive study of moving mesh methods and applications thereof in
the one-dimensional case (see, for example, [7, 9–11, 18] and references therein). In two
space dimensions, several methods have been developed to determine mesh movement.
For example, the moving finite element method of Miller and Miller [17] determines the
mesh movement by minimizing the residual for the governing PDEs. Recently, Huang and
Russell [12, 13] have developed a moving mesh strategy based on the solution of a system of
moving mesh PDEs that is derived from the gradient flow equation of a carefully designed
functional. This functional takes account of the key objectives, and it contains terms that
deal with mesh adaptation, quality control, and smoothness.

No convergence analysis has been produced for moving mesh methods, and insight into
the behavior of the methods has to be obtained by means of numerical experiments. In the
course of conducting experiments on problems in one and two space dimensions it became
apparent to us that, even in the one-dimensional case, many aspects of the behavior of
moving mesh methods had still not been elucidated. The motivation for the work presented
in this paper stems from the observation that further important features of the perfor-
mance of one-dimensional moving mesh methods can be illustrated using simple numerical
experiments.

The paper describes some results on the numerical solution of the one-dimensional vis-
cous Burgers’ equation using one of the moving mesh methods proposed by Huanget al.
[9]. Section 2 presents the differential problem on which the numerical experiments are per-
formed, together with the moving mesh partial differential equation (MMPDE) that is used
to generate the grid. This section also deals with the discretization of the PDEs and aspects
of the adaptive process such as the choices of monitor function, smoothing processes, and
algorithms for integration over time. Section 3 presents an analysis of the errors incurred
when the initial function is approximated by its piecewise linear interpolants on nonuniform
initial grids that are generated by equidistribution of each of the monitor functions used in
this investigation. This analysis provides reliable predictions for how the accuracy of the
computations on adaptive meshes depends on the choice of monitor function. It deals also
with variations in accuracy and efficiency of the moving mesh approach brought about by
variations in the method of implementation. In Section 3, the moving mesh calculations are
performed using a fixed time step.

The important property of time-step control is considered in Section 4. High computa-
tional efficiency can be achieved only if time-step control methods are used that suit the
special features of these methods. To this end, we present a robust and efficient time-step
control mechanism that makes use of error indicators for the accuracy of the grid and the
accuracy of the solution of the physical PDE. The problem of time-step control has been
examined by Verwer and Blom [20], and more recently by Cao, Huang, and Russell [6],
and Huang [8].

Section 5 contains conclusions and comments on our numerical investigations.
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2. TEST PROBLEM AND ADAPTIVE SCHEME

2.1. Test Problem

All numerical computations described in the paper were performed on the one-dimensional
Burgers’ equation

∂u

∂t
+ u

∂u

∂x
− ε ∂

2u

∂x2
= 0, x ∈ Äp := (0, 1), t ∈ (0, T ], (2.1)

subject to initial and boundary conditions taken from the exact solution

u(x, t) = c− 1

2
tanh

[
1

4ε
(x − ct − x0)

]
, (2.2)

wherec = 1/2 andε is a constant that satisfies 0< ε ¿ 1. The solution describes a traveling
front joining an upstream stateu = 1 and a downstream stateu = 0. The front moves with
velocityc and is initially at locationx = x0. In the computations we use the initial location
x0 = 1/4. This test problem has been used in computational experiments by Blomet al. [5]
and by Mulhollandet al. [18].

2.2. Adaptive Moving Mesh Method

Here we give a brief outline of the moving mesh method that is used to generate the
time-dependent grid and the approximate solution of (2.1). Further details may be found in
the papers by Huanget al. [9] and Mulhollandet al. [18]. Equation (2.1) is first recast in
terms of the independent variablesξ andt , whereξ is defined by a one-to-one coordinate
transformation of the form

x = x(ξ, t), ξ ∈ Äc = (0, 1), t ∈ (0, T ], (2.3)

from computational spaceÄc × (0, T ] to physical spaceÄp × (0, T ]. At time t , the map
(2.3) defines a set of nodes inÄp that corresponds to a uniform mesh onÄc. This uniform
mesh is given by

ξi = i /N, i = 0, 1, . . . , N, (2.4)

and the related mesh onÄp is the grid

1N := {0= x0(t) < x1(t) < · · · < xN(t) = 1}, (2.5)

where

xi (t) = x(ξi , t), i = 0, 1, . . . , N. (2.6)

It is convenient to express the time derivative in (2.1) in Lagrangian form [9] and we
therefore write the equation as

u̇− ẋ
∂u

∂x
+ u

∂u

∂x
− ε ∂

2u

∂x2
= 0, (2.7)
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whereu̇ andẋ denote derivatives with respect tot in which ξ is held constant. In terms of
the independent variablesξ andt , Eq. (2.7) becomes

xξ v̇ − ∂v
∂ξ

ẋ + 1

2

∂

∂ξ
(v2)− ε ∂

∂ξ

(
1

xξ

∂v

∂ξ

)
= 0, (2.8)

where

xξ ≡ ∂x

∂ξ
and v(ξ, t) ≡ u(x(ξ, t), t).

In the moving mesh method a mesh generating equation, based on equidistribution of a
monitor function, is combined with (2.8) to give a system of equations that determines
the time evolution ofx(ξ, t) and v(ξ, t). Here we use a moving mesh PDE that is the
one-dimensional analogue of one of the two-dimensional methods proposed by Huang and
Russell [13]. The map (2.3) is generated as the solution of the PDE

∂x

∂t
= 1

τ

(
M
∂x

∂ξ

)−2
∂

∂ξ

(
M
∂x

∂ξ

)
, ξ ∈ Äc,

(2.9)
x(0, t) = 0, x(1, t) = 1,

whereτ is a positive constant known as the temporal smoothing parameter andM(u(x, t))
is the monitor function. Factors that influence the choice ofτ are discussed by Huang [8].
The initial condition,x(ξ, 0), is obtained by equidistribution of a monitor function based
on the exact solution (2.2) att = 0, and details of this are given where the algorithm is
presented in Section 2.3.

In this paper, computations are performed using two distinct monitor functions. The first
of these is the popular arc-length monitor function (henceforth referred to as the AL monitor
function)

M(u(x, t)) =
√
γ +

(
∂u

∂x
(x, t)

)2

, (2.10)

whereγ is a user-prescribed parameter. The second monitor function is a modification of
one that has been used to great effect by Beckett and Mackenzie [2, 3] for steady reaction–
diffusion and convection–diffusion problems. This function—henceforth referred to as the
BM monitor function—has the form

M(u(x, t)) = α +
∣∣∣∣∂u

∂x
(x, t)

∣∣∣∣ 1
m

, (2.11)

whereα andmare positive constants. In the calculations involving the BM monitor function
we use the valuem= 2, which is suggested by the analysis presented by Beckett and
Mackenzie [2, 3]. They use the second spatial derivative ofu in (2.11), and they show how
α may be chosen in terms ofm to control the proportion of grid points located in steep
layers. For the evolutionary problem considered here we follow Beckett and Mackenzie
[2, 3] and defineα = α(t) in (2.11) by

α =
∫ 1

0

∣∣∣∣∂u

∂x
(x, t)

∣∣∣∣ 1
m

dx. (2.12)
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Since equidistribution ofM on [0, 1] is governed at timet by the condition [6]∫ x(ξ,t)

0
M(u(s, t)) ds= ξ

∫ 1

0
M(u(x, t)) dx, (2.13)

it follows thatα = α(t) is given by∫ x(ξ,t)

0
M(u(s, t)) ds= 2αξ. (2.14)

If we assume that| ∂u
∂x | is negligible outside a steep layer then it follows from (2.11) and

(2.14) that an element of lengthdx ⊂ Äp in a smooth region of flow is related to an element
of lengthdξ ⊂ Äc by

dx ∼ 2dξ.

This shows that for the BM monitor function, withα given by (2.12), approximately half
of the grid points will be located outside the steep layers. The grid has some similarities
to Shishkin grids that have been used extensively to solve steady singular perturbation
problems (see, for example, [19]). A nodal distribution of this type is generated by the
equidistribution of the AL monitor function (2.10) whenγ is set equal to unity. This value
is used throughout the paper and the AL monitor function is henceforth given by (2.10)
with γ = 1.

2.3. Discretization of (2.8) and (2.9)

We seek approximations to the time-dependent vectors{xi }Ni=0 and{vi }Ni=0, where

vi = vi (t) = v(ξi , t) = u(x(ξi , t), t) (2.15)

andxi is given by (2.6). Equation (2.8) is discretized on the equispaced grid (2.4) to give

(xi+1− xi−1)v̇i − (vi+1− vi−1)ẋi + 1

2
((vi+1)

2− (vi−1)
2)

− 2ε

(
vi+1− vi

xi+1− xi
− vi − vi−1

xi − xi−1

)
= 0 (2.16)

for i = 1, 2, . . . , N − 1, withv0 andvN given by the exact solution (2.2) atx = 0 andx = 1,
respectively. This discretization is second-order accurate on an even grid. The discretization
of (2.9) requires the evaluation of the monitor functionM at (ξi+ 1

2
, t), and to this end we

approximate∂u
∂x at (x(ξi+ 1

2
, t), t) by

gi+ 1
2
=
(
vi+1− vi

xi+1− xi

)
(2.17)

for i = 0, 1, . . . , N − 1. For the BM monitor functionα is given by a quadrature approxi-
mation in (2.12) as

α =
N−1∑
i=0

∣∣gi+ 1
2

∣∣ 1
m (xi+1− xi ). (2.18)
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The approximations to the monitor functions (2.10) and (2.11) at(x(ξi+ 1
2
, t), t) are given,

respectively, by

Mi+ 1
2
=
√

1+ g2
i+ 1

2
(2.19)

and

Mi+ 1
2
= α + ∣∣gi+ 1

2

∣∣ 1
m , i = 0, 1, . . . , N − 1. (2.20)

If the spatial derivatives in (2.9) are discretized by second-order central differences on the
grid (2.4) we obtain the semidiscrete system of moving mesh equations defined by

ẋi = 4

τ
(M̃i (xi+1− xi−1))

−2
(
M̃i+ 1

2
(xi+1− xi )− M̃i− 1

2
(xi − xi−1)

)
, (2.21)

for i = 1, 2, . . . , N − 1, with x0 = 0 andxN = 1.
In (2.21),M̃i+ 1

2
is a smoothed monitor function defined as in [18] by

M̃i+ 1
2
=
∑i+p

k=i−p Mk+1/2(q/(q + 1))|k−i |∑i+p
k=i−p(q/(q + 1))|k−i | , (2.22)

whereq is a positive real number andp is a nonnegative integer. Furthermore, in (2.22) the
summations contain only those terms that are well defined (0≤ k ≤ N − 1). The termM̃i

in (2.21) is given by

M̃i =
M̃i− 1

2

(
xi+ 1

2
− xi

)+ M̃i+ 1
2

(
xi − xi− 1

2

)(
xi+ 1

2
− xi− 1

2

) . (2.23)

The solution{xi , vi }Ni=0 is obtained using a numerical integration of the systems (2.16)
and (2.21) from suitably chosen initial states. To effect the numerical integration fromt = tn
to t = tn+1 the systems of differential equations are uncoupled. Equation (2.16) is regarded
as an equation in{vi }Ni=0 ≡ v in which approximations to the node locations are available at
t = tn andt = tn+1, and (2.21) is the governing equation for{xi }Ni=0 ≡ x in which M̃i± 1

2
and

the term(M̃i (xi+1− xi−1))
−2 are known fori = 1, 2, . . . , N − 1. Givenx andv at t = tn,

the smoothed monitor function is evaluated at this value oft , and the term(xi+1− xi−1) is
evaluated using approximations tox at t = tn+1. The approximation used is the value ofx at
t = tn or the value in the preceding cycle when an iterative approach is employed to solve
the decoupled system. The mesh is computed att = tn+1 using an implicit Euler—or first-
order BDF (BDF1)—approximation to the linearized system (2.21). The vectorv is then
computed att = tn+1 by means of a second-order singly diagonally implicit Runge–Kutta
(SDIRK) method [14]. Suppose this SDIRK method (SDIRK2) is employed to integrate
the system

v̇ = f(t, v), (2.24)
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wheref: R× Rm→ Rm. The method is represented by the Butcher array

c A

bT
=
γ γ 0

1 1− γ γ

1− γ γ

, (2.25)

whereγ = (2−√2)/2. Integration of (2.24) fromt = tn to t = tn+1 = tn +1tn is given
by

k1 = f(tn + γ1tn, vn + γ1tnk1),

k2 = f(tn +1tn, vn + (1− γ )1tnk1+ γ1tnk2), (2.26)

vn+1 = vn +1tn((1− γ )k1+ γ k2).

Herevn denotes the value ofv at t = tn. Solution of (2.26) fork1 andk2 is obtained using
a Newton iteration, terminating when convergence is achieved in thel∞ norm to within a
tolerance KTOL, which is set atε × 10−6.

In the computations described in Section 3 the time step1tn is fixed at a value1t
throughout the integration, and in the computations described in Section 4 the second-order
method is combined with a first-order method to estimate the local error in the latter. This
error indicator is used to control the time step so that the first-order integration is carried
out to an acceptable degree of accuracy. Ifv̂n+1 is the approximation tov at t = tn+1 given
by the first-order method, the error indicator forv̂n+1 is

ERR= ‖vn+1− v̂n+1‖l∞ . (2.27)

If ERR>ETOL, where ETOL is a preset error tolerance, the computed solution att = tn+1

is rejected and the solution is recomputed with a smaller time-step. If ERR≤ ETOL, the
next time step is given by

1tn+1 = 1tn

(
ETOL

ERR

) 1
2

. (2.28)

In practice, a more sophisticated time-step revision is used as described in Hairer and
Wanner [14]. This is given by

1tn+1 = 1tn ×min

(
maxfac, max

[
minfac, η

(
ETOL

ERR

) 1
2

])
, (2.29)

where maxfac is a number in the range 1.5≤maxfac≤ 3,η ∼ 0.6 and minfac is set to 0.1.
The update given by (2.29) prevents rapid changes in the time step. In practical computations,
the local error indicator ERR may not give an accurate indication of the global error and it
may be claimed that the accepted approximation should be that given by the second-order
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method. The time-step control process is then simply taken to be a guide to the stepsize
selection. This relaxation is adopted in the calculations described in Section 4.

To maximize computational efficiency, the first-order scheme that is combined with (2.26)
should use the same vectorcand matrixA as those given in (2.25). An embedded first-order
SDIRK scheme satisfying these conditions gives the approximation

v̂n+1 = vn +1tnk1, (2.30)

wherek1 is given in (2.26). In the process of integrating (2.16) fromtn to tn+1 by means of
SDIRK2, the vectoṙx is replaced by(xn+1− xn)/1tn andx is evaluated in [tn, tn+1] using
the linear interpolant

x := xn + ẋ(t − tn). (2.31)

Herexn denotes the approximation tox at t = tn.
The initial state forx at t = t0 is given by integrating the moving mesh Eq. (2.21) to a

steady state, starting with an evenly spaced mesh. In this preliminary integration the exact
solution (2.2) att = 0 is used to evaluate the monitor function, and a steady state is assumed
to be achieved when the maximum nodal deviation between meshes on two consecutive
time steps is less than a prescribed tolerance, MTOL. In the computations to be described
later we choose MTOL= ε × 10−3. If the mesh generated by this preliminary integration
of (2.21) is denoted by{xi (0)}Ni=0 = x0 then the exact solution (2.2) gives the initial values
of {vi }Ni=0 = v0 as{u(xi (0), 0)}Ni=0.

The key steps in evolving the solution of (2.16) and (2.21) fromtn to tn+1 are summarised
in theone-passalgorithm below.

ONE-PASSALGORITHM

(i) Form initial conditionsx0 andv0 as described previously. Select time step and the
various parameters.n := 0

(ii) Evaluate monitor function attn and obtainxn+1 from (2.21) using BDF1.
(iii) Obtain vn+1 from (2.16) using SDIRK2, withx andẋ given by (2.31).
(iv) n := n+ 1. Go to (ii).

Some modifications of this basic algorithm are adopted in the various numerical exper-
iments to be described. One useful modification is referred to as atwo-passsolution. In
this case, a return is made to step (ii) aftervn+1 has been obtained in step (iii): the monitor
function is evaluated attn+1 andxn+1 is recomputed by means of (2.21). Steps (iii) and
(iv) are then applied. This recycle on steps (ii) and (iii) is repeated in themultipassmode
until the approximations tox at tn+1 have converged to within a tolerance MTOL in the
l∞ norm. Methods of solution based on decoupling the mesh equations from the physical
PDE have been used by other authors. For example, Verwer and Blom [20] decoupled the
systems. They used one pass for the mesh equations and two for the physical PDE at each
time step.

We shall see in Section 4 that time-step control based entirely on the error indicator
‖vn+1− v̂n+1‖l∞ does not perform well in all situations. This may be because the discrepancy
betweenvn+1 and v̂n+1 in (2.27) is not significant if the mesh placement is poor. In this
case, (2.28) will overestimate the permissible time step.
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3. ACCURACY CONSIDERATIONS

3.1. Interpolation Error on Initial Grid

The Appendix considers the error incurred when the function

u(x) = tanh

(
x − x0

ε

)
, 0< x0 < 1, (3.1)

is approximated in [0, 1] by its piecewise linear interpolant on a nonuniform grid determined
by equidistribution of the AL monitor function (2.10) and the BM monitor function (2.11)
with m= 2. The error behavior as a grid is refined will depend on the choice of norm. When
using difference methods that are designed to resolve layers in the solution the maximum
norm is appropriate due to the need to measure the error within the layers. Other norms
involve averages of the error and this smooths out rapid changes and prevents the norm from
capturing the local behavior of the error within the layer. Analyses of difference schemes
that exhibit uniform convergence with respect to the perturbation parameter are presented
in [16, 19], where it is shown that the appropriate norm is the maximum discrete norm.
Accordingly, the linear interpolation error is measured in theL∞ norm and the errors in
discrete solutions of (2.1), (2.2) are measured in thel∞ norm.

For the AL monitor function the tightest bound obtained in theL∞ norm for the error is
of the formC N−1, whereC is a constant that is independent ofN. In the case of the BM
monitor function, the corresponding bound on the error isC N−2.

The theoretical bounds on the linear interpolation error were checked numerically for
the tanh profile given by the initial value of the exact solution (2.2). The equidistributed
grid may be determined exactly for the BM monitor function from the discrete form of the
equidistribution condition (2.13), which is

∫ xi

0
M(u(x, t)) dx = ξi

∫ 1

0
M(u(x, t)) dx. (3.2)

The grid is obtained by numerical solution of (3.2) for the AL monitor function. An ap-
proximation to theL∞ error is obtained by computing the error at 10 evenly spaced points
in each interval(xi , xi+1), i = 0, 1, . . . , N − 1.

Tables I and II show theL∞ errors and the estimated convergence rates for the BM and
AL monitor functions at several values ofε.

TABLE I

L∞ Errors and Convergence Rates for the Linear Interpolant Approximating u(x, 0) in

(2.2) on Equidistributed Grid with BM Monitor Function

ε = 1× 10−4 ε = 1× 10−6 ε = 1× 10−8

N ‖e‖L∞ Conv. rate ‖e‖L∞ Conv. rate ‖e‖L∞ Conv. rate

8 9.30× 10−2 1.12× 10−1 1.19× 10−1

16 2.34× 10−2 1.99 2.89× 10−2 1.96 3.09× 10−2 1.95
32 5.58× 10−3 2.07 7.18× 10−3 2.01 7.70× 10−3 2.01
64 1.30× 10−3 2.11 1.76× 10−3 2.03 1.90× 10−3 2.02
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TABLE II

Results as in TABLE I Using the AL Monitor Function

ε = 1× 10−4 ε = 1× 10−6 ε = 1× 10−8

N ‖e‖L∞ Conv. rate ‖e‖L∞ Conv. rate ‖e‖L∞ Conv. rate

8 1.37× 10−1 1.72× 10−1 1.80× 10−1

16 6.67× 10−2 1.04 8.58× 10−2 1.01 9.61× 10−2 0.90
32 3.16× 10−2 1.08 4.22× 10−2 1.02 4.74× 10−2 1.02
64 1.51× 10−2 1.07 2.06× 10−2 1.03 2.35× 10−2 1.01

The results displayed in Tables I and II enable us to anticipate the limitations on the
accuracy that might be expected when the test problem (2.1), (2.2) is solved using the
adaptive moving mesh method presented in Section 2. Table I shows that the interpolation
error on the initial grid behaves likeC/N2 if the grid is generated by equidistribution of the
BM monitor function. For the AL monitor function, Table II shows that the interpolation
error on the initial grid behaves likeC/N. In both cases, the results suggest that the constant
C is independent ofN andε, and the errors behave like the theoretical bounds that are
presented in the Appendix.

The significance of the results presented in Tables I and II in relation to the solution
of (2.1), (2.2) by a moving mesh method is that the anticipated error behavior is at best
O(N−1) andO(N−2) for the AL and BM monitor functions, respectively. The numerical
results presented in the following sections will vindicate these expectations.

3.2. Accuracy in Relation to Method of Solution With Fixed Time Step

Here we consider how the accuracy of the computed solution is influenced by the method
adopted to solve the semidiscrete moving mesh Eq. (2.21). Specifically, we compare the
performance of theone-passalgorithm with twomultipassalgorithms. Results are presented
for both the BM and AL monitor functions withε = 2.0× 10−3. A fixed time step is
employed, the size of which is chosen experimentally to provide comparable spatial and
temporal components of the total computational error. To provide control data, we solve
the discretized PDE (2.16) on a mesh obtained by exact equidistribution of the BM monitor
function at each time step. This is achieved by exact solution of (3.2) withu(x, t) given by
the analytic solution (2.2) att = tn+1. The replacement of step (ii) in theone-passalgorithm
by this solution process forxn+1 gives an exactly equidistributed grid that we shall refer to
as EEG. The test problem (2.1), (2.2) was solved over the interval 0< t ≤ 1.0 using the
one-passalgorithm on the EEG: maximum nodal errors and estimated convergence rates
are presented in Table III. It may be seen that high accuracy is achieved in thel∞ norm for a
time step that is large relative toε. Note also that the maximum nodal error decays at second
order in both1t andN−1, which is the optimal rate of convergence for this discretization.

Results presented in Table III may be used as a benchmark against which we can measure
the accuracy of the fixed time-step adaptive scheme described in Section 2. The decoupled
system inx andv is solved using theone-passandmultipassalgorithms described in Sec-
tion 2. Tables IV, V, and VI present results forfour-pass, two-pass, andone-passalgorithms,
respectively, with equidistribution based on the BM monitor function. The temporal and
spatial smoothing parameter values used in Eqs. (2.9) and (2.22) areτ = 0.1, q = 2.0, and
p = 3. One additional feature introduced here involves the use of a relaxation parameter,
ω, in the determination ofx at t = tn+1. If x∗n+1 denotes the value computed at step (ii) in
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TABLE III

EEG Results for the BM Monitor Function

N (1t)−1 ‖e‖l∞ Conv. rate

32 50 5.82× 10−3

64 100 1.03× 10−3 2.50
128 200 2.27× 10−4 2.18
256 400 5.55× 10−5 2.04
512 800 1.38× 10−5 2.00

TABLE IV

Four-pass Algorithm with BM Monitor Function

N (1t)−1 ‖e‖l∞ Conv. rate Cost

32 50 6.58× 10−3 1.36
64 100 7.00× 10−4 3.23 3.52

128 200 1.84× 10−4 1.92 12.48
256 400 5.03× 10−5 1.87 48.6
512 800 1.32× 10−5 1.93 207

TABLE V

Two-pass Algorithm with BM Monitor Function

N (1t)−1 ‖e‖l∞ Conv. rate Cost

32 50 5.34× 10−1 1.00
64 100 7.79× 10−4 9.42 1.86

128 200 5.13× 10−4 0.60 6.65
256 400 7.17× 10−5 2.84 25.4
512 800 1.10× 10−5 2.70 95.2

TABLE VI

One-pass Algorithm with BM Monitor Function

N (1t)−1 ‖e‖l∞ Conv. rate Cost

32 3200 3.52× 10−3 10.3
64 6400 7.03× 10−4 2.32 39.8

128 12800 1.89× 10−4 1.90 159



ONE-DIMENSIONAL PDES 383

theone-passalgorithm then the relaxed value,xn+1, that is used in step (iii) is given by

xn+1 := ωx∗n+1+ (1− ω)xn, (3.3)

whereω = 0.2 throughout.
The computational costs displayed in Table IV and in all subsequent tables are the costs

in flops of the integrations over the interval 0< t ≤ 1.0, normalized relative to the cheapest
computation in the complete set. The cheapest computation is thetwo-passcomputation
whose results are displayed in Table V withN = 32.

The maximum nodal error in the solution given by thefour-passalgorithm is marginally
smaller than that in the solution computed on the EEG, but the convergence rate is ap-
proaching second order from below asN increases and1t decreases, withN ×1t held
constant. In the asymptotic limit asN →∞ and1t → 0, the difference between the EEG
results and thefour-passresults becomes negligible. The small discrepancy between the
two modes of solution can be attributed to the moderating effects of the smoothing that is
incorporated in the decoupled algorithms to improve the robustness of the decoupled solver.

In comparison, Table V shows that the convergence behavior of thetwo-passalgorithm is
more erratic than that of thefour-passalgorithm asN increases and1t decreases. However,
the error in thetwo-passcomputation approaches that in thefour-passcomputation asN
increases, withN ×1t held constant. Note also that the computational cost of atwo-pass
computation is approximately half that of afour-passcomputation for a specified, and
sufficiently large, value ofN. The source of the erratic error behavior for lowN and large
1t is the error peak neart = 0 that occurs as the grid adapts to the moving front. This error
peak is less pronounced in the case of thefour-passalgorithm.

Finally, we consider theone-passresults presented in Table VI. The low computational
cost makes this a popular choice, especially in multidimensional computations. However,
because of the linearization of (2.21) that involves the evaluation of the monitor function
at t = tn, it is clear that the grid predicted by theone-passalgorithm will be based on the
numerical solution at the previous time step. In practice, this limits the maximum time step
that may be used, and the time-step restriction depends on the value ofε and on the rate
of propagation of the front. The results in Table VI confirm this defect: to obtain accuracy
that is comparable with themultipassalgorithms the time step has to be reduced drastically.
Indeed, with a reduction in time step by a factor of 64 the accuracy of theone-passalgorithm
becomes comparable with the accuracies achieved by thefour-passand EEG computations.
Tables III, IV, and VI demonstrate, however, that the additional time steps required by the
one-passalgorithm to achieve this parity with themultipassalgorithms make the former a
much more expensive mode of computation.

Tables VII–IX present results of analogous computations using the AL monitor function.
The relative performances of thefour-pass, two-pass, andone-passalgorithms are similar to
those produced in the computations with the BM monitor function. However, the accuracies
achieved with the AL monitor function differ considerably from those achieved with the
BM monitor function. The nodal error in the AL computations does not decay at second
order in1t and N−1: indeed, the convergence rate is slightly less than first order. Since
the work load involved in using the AL monitor function is comparable to that for the BM
monitor function, the efficiency of the AL computation is considerably lower than that of
the BM computation.

The results presented in this section are summarized in Fig. 1, where we show a log–log
plot of thel∞ error against computational cost for each of the two monitor functions in the



384 BECKETT ET AL.

TABLE VII

Four-pass Algorithm with AL Monitor Function

N (1t)−1 ‖e‖l∞ Conv. rate Cost

32 200 2.80× 10−3 2.76
64 400 1.43× 10−3 0.97 11.3

128 800 7.94× 10−4 0.85 41.6
256 1600 4.52× 10−4 0.81 87.8
512 3200 1.97× 10−4 1.20 318

TABLE VIII

Two-pass Algorithm with AL Monitor Function

N (1t)−1 ‖e‖l∞ Conv. rate Cost

32 200 2.84× 10−3 1.63
64 400 1.41× 10−3 1.01 6.05

128 800 7.92× 10−4 0.84 20.5
256 1600 4.51× 10−4 0.81 79.9
512 3200 1.97× 10−4 1.20 318

TABLE IX

One-pass Algorithm with AL Monitor Function

N (1t)−1 ‖e‖l∞ Conv. rate Cost

32 1600 2.78× 10−3 5.66
64 3200 1.43× 10−3 0.96 22.2

128 6400 7.97× 10−4 0.84 88.0

FIG. 1. Cost comparison of AL and BM monitor functions for various pass strategies.
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one-, two-, andfour-passmodes of operation for a range of values ofN and1t . In each of
the three modes it is seen that the slope of the graph for the BM monitor function is steeper
than that for the AL monitor—approximately−1 in the BM case and−0.5 in the AL case.
(The solid line indicates a slope of−1.) With the exception of BM1 (BM in theone-pass
algorithm), the BM monitor function is always more efficient than the AL monitor function.
Over the range of values ofN and1t considered here, BM2 and BM4 are comparable,
particularly for large values ofN and small values of1t .

4. TIME-STEP CONTROL

4.1. Control Mechanisms

In this section we describe numerical experiments that illustrate features which are useful
in the construction of a reliable time-step control mechanism. As outlined in Section 2, time-
step control requires the availability of a reliable error indicator in the form of Eq. (2.27).
The SDIRK2 scheme (2.26) and the embedded first-order SDIRK scheme (2.30) give rise
to the error indicator

ERR= ‖vn+1− v̂n+1‖l∞ = ‖γ1tn(k2− k1)‖l∞ . (4.1)

This error indicator is utilized in (2.29) to provide time-step revision and, as intimated
immediately after (2.29), the more accurate SDIRK2 approximation,vn+1, is carried for-
ward. Throughout this section, the temporal and spatial smoothing parameter values used
in Eqs. (2.9) and (2.22) areτ = 0.1, q = 2.0, andp = 3; the error control parameter val-
ues in (2.29) are minfac= 0.1, maxfac= 2.0, andη = 0.64, and the singular perturbation
parameterε is set at 2.0× 10−3.

In Table X and Fig. 2, we present numerical results for the BM monitor function using
thefour-passalgorithm. It can be seen that the nodal error is comparable to that in Table IV,
where an appropriate fixed time-step was selected a priori. The results in Table X demon-
strate second-order convergence with respect to1t and N−1. However, there are several
unsatisfactory aspects to these results. First, the computational cost is higher in Table X
than in Table IV. Second, as seen clearly in the inset in Fig. 2, the mesh points do not
follow smooth trajectories as time evolves. Third, the time-step history displayed in Fig. 2
is highly erratic. While these factors do not have a significant effect on the nodal error in
this computation, they are undesirable—diminishing the robustness of the time-step control
mechanism and reducing the overall efficiency of the algorithm.

TABLE X

Four-pass Algorithm with BM Monitor Function and Time-step

Control Applied Only to the Physical PDE: ∆t0 = 1/400

N ETOL ‖e‖l∞ Conv. rate Cost

32 5.00× 10−4 3.76× 10−3 5.88
64 1.25× 10−4 7.37× 10−4 2.35 10.7

128 3.00× 10−4 1.96× 10−4 1.91 35.3
256 7.50× 10−6 5.15× 10−5 1.93 76.6
512 2.00× 10−6 1.36× 10−5 1.92 263
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FIG. 2. Mesh trajectories, error, and time-step history for BM monitor, four-pass algorithm, with time-step
control for physical PDE only.

Numerical experiments suggest that the reason for the poor performance of the time-step
control mechanism used for Table X and Fig. 2 is its lack of consideration for the accuracy
of the grid point location. It has been observed by several authors (see, for example, [1])
that it is not necessary to determine the grid with the same level of accuracy as the physical
solution. Consequently, small errors in the solution of the physical PDE may coexist with
larger errors in the grid location. Time-step control based solely on the accuracy of the
solution of the physical PDE is likely, therefore, to be insensitive to any deterioration in
the grid. This problem has been identified by Blomet al. [5] where, to compensate for a
lack of control of the grid accuracy, the following modifications are made: if at timetn+1

a time-step failure occurs then not only is the current solution (xn+1, vn+1) rejected but so
also is the solution at the previous step,t = tn. Furthermore, in the steps immediately after
the time-step failure additional constraints are imposed to prevent the time-step size from
increasing too rapidly and giving rise to additional time-step failures. Figure 3 presents
numerical results for the computation displayed in Fig. 2, with these additional time-step
constraints imposed. It may be seen that some of the unsatisfactory aspects of the results
presented in Fig. 2 have been alleviated. The mesh trajectories are significantly smoother
than in Fig. 2 (see the inset in Fig. 3) and the erratic behavior of the time-step history has
been reduced. However, the computational cost is comparable to that incurred for Fig. 2,
this being a penalty brought about by the large number of time-step failures.

An alternative approach to that adopted by Blomet al. [5], is to incorporate additional
measures of the mesh accuracy into the time-step control mechanism. For amultipass

FIG. 3. Mesh trajectories, error, and time-step history for BM monitor, four-pass algorithm, with time-step
control for physical PDE and mesh as in Blomet al. [5].
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TABLE XI

Four-pass Algorithm with BM Monitor Function and Modified

Time-step Control: ∆t0 = 1/400

N ETOL ‖e‖l∞ Conv. rate Cost

32 5.00× 10−4 3.06× 10−3 3.95
64 1.25× 10−4 6.92× 10−4 2.15 6.46

128 3.00× 10−5 1.88× 10−4 1.90 20.1
256 7.50× 10−6 5.09× 10−5 1.88 56.1
512 2.00× 10−6 1.35× 10−5 1.91 210

algorithm, a simple indication of the accuracy of the grid may be provided cheaply by

mesherr= ‖xn+1− x̂n+1‖l∞ , (4.2)

wherexn+1 denotes the final mesh att = tn+1 and x̂n+1 denotes the mesh at the previous
pass in the algorithm. If mesherr> MESH TOL, where MESHTOL is a user-prescribed
error tolerance, then the solution att = tn+1 is rejected and the computation is repeated
using a smaller time step. If mesherr≤ MESH TOL then the next time step is computed
as

1tn+1 = 1tn ×min

(
maxfac,max

[
minfac,

log(mesherr)

log (MESH BAL)

])
, (4.3)

where MESHBAL is a user-chosen parameter satisfying MESHBAL < MESH TOL. A
value for1tn+1 is also computed using (2.29) and the smaller of the two values is adopted.

Table XI and Fig. 4 show revised results using the modified time-step control mechanism
with MESH TOL= 0.6ε and MESHBAL = 0.3ε. As can be seen, the nodal errors incurred
are comparable with those displayed in Table IV. A comparison of Tables X and XI shows
that the introduction of the additional time-step control has brought about a significant
reduction in computational cost and the number of time-step failures has been reduced to
zero. The computational cost in Table XI is comparable with that in Table IV. Furthermore,
the mesh trajectories are now much smoother (see the inset in Fig. 4) and the time-step size
settles down to an appropriate value of approximately 6.0× 10−3.

FIG. 4. Mesh trajectories, error, and time-step history for BM monitor, four-pass algorithm, with time-step
control for the physical PDE and mesh.
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TABLE XII

Four-pass Algorithm with AL Monitor Function and Modified

Time-step Control: ∆t0 = 1/400

N ETOL ‖e‖l∞ Conv. rate Cost

32 5.00× 10−4 2.84× 10−3 2.28
64 2.50× 10−4 1.47× 10−3 0.95 5.69

128 1.00× 10−4 7.93× 10−4 0.89 19.6
256 5.00× 10−5 4.44× 10−4 0.84 50.8
512 2.50× 10−5 1.88× 10−4 1.24 164

Results are also presented for the AL monitor function in Table XII, with thefour-pass
algorithm and the modified time-step control mechanism (all parameters are as in the BM
case). Once again, we see good agreement, with respect to nodal error and convergence rate,
between these results and the corresponding fixed time-step results presented in Table VII.
Note that the computational cost of the variable time-step algorithm with the AL monitor
function is significantly less than that of the corresponding fixed time-step algorithm.

4.2. Tracking the Front as It Leaves the Domain

It is well known that additional numerical difficulties are encountered if we attempt to
track the front as it leaves the domain [18]. For the test problem (2.1), (2.2), this occurs at
t = 1.5 and it provides a good test of the robustness of themultipassalgorithm.

Figures 5 and 6 show numerical results for the BM and AL monitor functions, with
time-step control based on error indicators for the solution of the physical PDE and the
mesh as for Table XI and Fig. 4. Parameter values are chosen as in Section 4.1. In both
cases, we see that as the front approaches the righthand boundary of the domain, the nodal
error increase induces multiple time-step failures, and this causes the time-step size to fall
by two orders of magnitude. The increase in error is due, in part, to a spatial component
that cannot be eliminated by a reduction in the time-step size and, as a consequence, some
rise in error is inevitable. As the front leaves the domain, the contribution of|u′| to the
AL monitor function diminishes. This means that the constant floor in (2.10) becomes
dominant and this results in a rapid propagation of mesh points to the left to produce a

FIG. 5. Mesh trajectories, error, and time-step history for BM monitor, four-pass algorithm, with time-step
control for physical PDE and mesh. Front leaving the domain.
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FIG. 6. Mesh trajectories, error, and time-step history for AL monitor, four-pass algorithm, with time-step
control for physical PDE and mesh. Front leaving the domain.

uniform grid. This transformation of the grid occurs in a very small time frame of orderε

and it causes additional numerical difficulties since terms in (2.8) that depend on the mesh
velocity ẋ become very large. For the AL monitor function, the error increases by a factor
of six to 8.31× 10−3 as the front leaves the domain. In contrast, the floorα in the BM
monitor function is automatically rescaled as the|u′| contribution to the monitor function
diminishes. This results in a much smoother transformation to a uniform grid. The effect
of this smoother transition is that the nodal error for the BM case is much smaller, peaking
at 1.56× 10−3, approximately double the error before the influence of the boundary is felt.
In both examples, the dramatic reduction in the time-step size causes large increases in the
computational costs.

5. CONCLUSIONS AND COMMENTS

The one-dimensional Burgers’ equation has been used to elucidate several aspects of the
solution of moving mesh partial differential equations. The moving mesh method used in
the numerical experiments is one of those proposed by Huanget al. [9] and it is based on
the equidistribution of a monitor function. By considering the familiar arc-length monitor
function and one proposed by Beckett and Mackenzie [2, 3] it has been shown that the choice
of monitor function has a significant influence on the accuracy of the computed results. Of
particular interest is the demonstration that optimal convergence rates can be achieved by
methods based on the Beckett and Mackenzie monitor function. These results are in line
with predictions based on an analysis of the error incurred when the initial function is
approximated by its piecewise linear interpolant on a nonuniform grid that is generated by
equidistribution.

The moving mesh partial differential equations were solved by decoupling the mesh
equations from the physical PDE. An algorithm has been presented that uses a first-order
BDF method for the time integration of the linearized mesh equation and a second-order
singly diagonally implicit Runge–Kutta (SDIRK) method for the physical PDE. It has
been shown that the efficiency, accuracy, and robustness of the moving mesh equations all
depend on the method that is adopted for the solution of the decoupled system. Numerical
experiments using a fixed time step have shown how an efficient and accurate solution
algorithm can be constructed. Finally, time-step control mechanisms were considered and a
robust and efficient method presented that makes use of error indicators for the accuracy of
the grid and the accuracy of the solution of the physical PDE. Work is being completed on
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extending the algorithm to deal with problems in two space dimensions [4], and this work
will be presented elsewhere.

APPENDIX

Interpolation Error on a Nonuniform Grid

In this section we consider the error incurred when the function

u(x) = tanh

(
x − x0

ε

)
, 0< x0 < 1,

is approximated by its piecewise linear interpolant,ū(x). To begin with, we shall assume
that the nonuniform mesh is generated by equidistributing the solution arc-length. From
the definition of the interpolant it is clear that there exists a positive constantc1 that is
independent ofu(x) andε such that

‖e‖L∞(xj−1,xj ) ≡ max
x∈(xj−1,xj )

|u(x)− ū(x)| ≤ c1

∫ xj

x j−1

|u′(x)| dx.

Using the equidistribution principle we have∫ xj

x j−1

|u′(x)| dx ≤
∫ xj

x j−1

√
1+ (u′(x))2 dx = 1

N

∫ 1

0

√
1+ (u′(x))2 dx ≤ c2

N
,

wherec2 is independent ofε. Hence, there exists aC, independent ofN andε, such that

‖e‖L∞(0,1) ≤ C N−1.

Equidistribution of the solution arc-length therefore leads to a mesh that results is a subop-
timal rate of convergence. Numerical experiments confirm that this estimate is sharp.

The second monitor function we consider is similar to that used by Beckett and Mackenzie
[2, 3] for singularly perturbed boundary value problems. The monitor takes the form

M(x) = α + |u′(x)|1/2, α =
∫ 1

0
|u′(x)|1/2 dx.

From standard interpolation theory there exists a positive constantc3 that is independent of
u(x) andε such that

‖e‖L∞(xj−1,xj ) ≤ c3h2
j |u′′(η j )|,

whereη j ∈ (xj−1, xj ). Furthermore, we have

|u′′(η j )| ≤ ε−1|u′(η j )| ≤ c4ε
−1 inf

x∈(xj−1,xj )
|u′(x)|,

where

c4 = max
1≤ j≤N

(
sup

x∈(xj−1,xj )

|u′′(x)|h j

)
.
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Using the global equidistribution principle we therefore have

‖e‖L∞(xj−1,xj ) ≤ c5ε
−1

(
inf

x∈(xj−1,xj )
|u′(xj )|1/2h j

)2

≤ c5ε
−1

(∫ xj

x j−1

α + |u′(s)|1/2 ds

)2

= c5ε
−1

(
2α

N

)2

,

wherec5 = c3c4. Finally, we have

α =
∫ 1

0
|u′(s)|1/2 ds< c6ε

1/2.

Hence, there exists aC, independent ofN, such that

‖e‖L∞(0,1) ≤ C N−2.

Note that the constantsc3 andc6 are independent ofε. Numerical experiments suggest that
c4 and henceC are alsoε independent.
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