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Numerical experiments are described that illustrate some important features of the
performance of moving mesh methods for solving one-dimensional partial differen-
tial equations (PDESs). The particular method considered here is an adaptive finite
difference method based on the equidistribution of a monitor function and it is one of
the moving mesh methods proposed by W. Huang, Y. Ren, and R. D. Russell (1994,
SIAM J. Numer. Anal31 709). We show how the accuracy of the computations is
strongly dependent on the choice of monitor function, and we present a monitor
function that yields an optimal rate of convergence. Motivated by efficiency consid-
erations for problems in two or more space dimensions, we demonstrate a robust
and efficient algorithm in which the mesh equations are uncoupled from the physical
PDE. The accuracy and efficiency of the various formulations of the algorithm are
considered and a novel automatic time-step control mechanism is integrated into the
scheme. (© 2001 Academic Press
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1. INTRODUCTION

Many evolutionary problems involving linear or nonlinear partial differential equation
(PDESs) have solutions with sharp transitions such as boundary layers or steep wave frt
Over the past decade it has generally been accepted, at least for problems in one ¢
dimension, that adaptive or moving mesh methods are capable of resolving the sharp tr:
tions to acceptable degrees of accuracy without using an excessive number of mesh pc
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The methods, by continuously relocating the mesh points to follow features of the compt
solution, provide an ideal adaptive strategy for solving problems of this type. Moving me
methods use nonuniform spatial meshes and, as time evolves, they concentrate the g
spatial regions of high activity. A useful approach in adaptive schemes is the concep
equidistribution, which seeks to distribute some function (referred to as the monitor ful
tion) uniformly over the domain of the problem. The adaptive methods considered in t
paper are based on equidistribution, and the monitor function is taken to be a measul
the local solution variation.

There has been an extensive study of moving mesh methods and applications there
the one-dimensional case (see, for example, [7, 9-11, 18] and references therein). In
space dimensions, several methods have been developed to determine mesh move
For example, the moving finite element method of Miller and Miller [17] determines tf
mesh movement by minimizing the residual for the governing PDEs. Recently, Huang :
Russell[12, 13] have developed a moving mesh strategy based on the solution of a syste
moving mesh PDEs that is derived from the gradient flow equation of a carefully desigr
functional. This functional takes account of the key objectives, and it contains terms t
deal with mesh adaptation, quality control, and smoothness.

No convergence analysis has been produced for moving mesh methods, and insight
the behavior of the methods has to be obtained by means of numerical experiments. i
course of conducting experiments on problems in one and two space dimensions it bec
apparent to us that, even in the one-dimensional case, many aspects of the behavi
moving mesh methods had still not been elucidated. The motivation for the work preser
in this paper stems from the observation that further important features of the per
mance of one-dimensional moving mesh methods can be illustrated using simple nume
experiments.

The paper describes some results on the numerical solution of the one-dimensional
cous Burgers’ equation using one of the moving mesh methods proposed by étusng
[9]. Section 2 presents the differential problem on which the numerical experiments are |
formed, together with the moving mesh partial differential equation (MMPDE) that is usi
to generate the grid. This section also deals with the discretization of the PDEs and asy
of the adaptive process such as the choices of monitor function, smoothing processes
algorithms for integration over time. Section 3 presents an analysis of the errors incul
when the initial function is approximated by its piecewise linear interpolants on nonunifo
initial grids that are generated by equidistribution of each of the monitor functions usec
this investigation. This analysis provides reliable predictions for how the accuracy of
computations on adaptive meshes depends on the choice of monitor function. It deals
with variations in accuracy and efficiency of the moving mesh approach brought about
variations in the method of implementation. In Section 3, the moving mesh calculations
performed using a fixed time step.

The important property of time-step control is considered in Section 4. High compu
tional efficiency can be achieved only if time-step control methods are used that suit
special features of these methods. To this end, we present a robust and efficient time
control mechanism that makes use of error indicators for the accuracy of the grid and
accuracy of the solution of the physical PDE. The problem of time-step control has b
examined by Verwer and Blom [20], and more recently by Cao, Huang, and Russell |
and Huang [8].

Section 5 contains conclusions and comments on our numerical investigations.
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2. TEST PROBLEM AND ADAPTIVE SCHEME

2.1. Test Problem

Allnumerical computations described in the paper were performed on the one-dimensi
Burgers’ equation

au au 92u
— 4+U——e—=0, xeQy,:=(0,1), te(T], 2.1
ot TYax T faxe €2=01D, teOT] (2.1)

subject to initial and boundary conditions taken from the exact solution

1 1
ux,t)y =c— > tanth(x —ct— xo)} , (2.2)

wherec = 1/2 ande is a constant that satisfiesQs « 1. The solution describes atraveling
front joining an upstream state= 1 and a downstream state= 0. The front moves with
velocity c and is initially at locationx = Xg. In the computations we use the initial location
Xo = 1/4. This test problem has been used in computational experiments byeBkin5]
and by Mulhollanckt al. [18].

2.2. Adaptive Moving Mesh Method

Here we give a brief outline of the moving mesh method that is used to generate
time-dependent grid and the approximate solution of (2.1). Further details may be foun
the papers by Huanet al. [9] and Mulhollandet al. [18]. Equation (2.1) is first recast in
terms of the independent variablesndt, where¢ is defined by a one-to-one coordinate
transformation of the form

X=X, 1), £€€Q:=(0,1, te(0T], (2.3)
from computational spac®. x (0, T] to physical spac&, x (0, T]. At time t, the map
(2.3) defines a set of nodesry, that corresponds to a uniform mesh@g This uniform
mesh is given by

&=i/N, i=01,...,N, (2.4)
and the related mesh @y, is the grid
AN = {0=Xo(t) < X1(t) < --- < xn(t) =1}, (2.5)
where
x(t) =x(&,t), i=01,...,N. (2.6)

It is convenient to express the time derivative in (2.1) in Lagrangian form [9] and v
therefore write the equation as

au au 92u

T _e—— =0 2.7
8x+u8x 88x2 ’ 27



ONE-DIMENSIONAL PDEs 375

whereu andx denote derivatives with respectttén which & is held constant. In terms of
the independent variablésandt, Eq. (2.7) becomes

v, 19 3 /19
&v—lx+——@%—&—<—l)=q (2.8)

where
ad

In the moving mesh method a mesh generating equation, based on equidistribution
monitor function, is combined with (2.8) to give a system of equations that determir
the time evolution ofx(&,t) andv(&,t). Here we use a moving mesh PDE that is the
one-dimensional analogue of one of the two-dimensional methods proposed by Huang
Russell [13]. The map (2.3) is generated as the solution of the PDE

-2
3 (w2) "2 (M), en,
R A A A

x(0,t) =0, x(L,t)=1,

2.9)

wherer is a positive constant known as the temporal smoothing parametéd anck, t))
is the monitor function. Factors that influence the choice afe discussed by Huang [8].
The initial condition,x (&, 0), is obtained by equidistribution of a monitor function basec
on the exact solution (2.2) at= 0, and details of this are given where the algorithm is
presented in Section 2.3.

In this paper, computations are performed using two distinct monitor functions. The fi
of these is the popular arc-length monitor function (henceforth referred to as the AL mon
function)

au 2
M(U(x, 1) = \/y + (ax(x,t)> , (2.10)

wherey is a user-prescribed parameter. The second monitor function is a modificatior
one that has been used to great effect by Beckett and Mackenzie [2, 3] for steady react
diffusion and convection—diffusion problems. This function—henceforth referred to as 1
BM monitor function—has the form

1
m

M@ux,t)) = o+ ’g—i(x, | , (2.11)

wherex andm are positive constants. In the calculations involving the BM monitor functio
we use the valuen = 2, which is suggested by the analysis presented by Beckett a
Mackenzie [2, 3]. They use the second spatial derivativeiof(2.11), and they show how
o may be chosen in terms ofi to control the proportion of grid points located in steep
layers. For the evolutionary problem considered here we follow Beckett and Macken
[2, 3] and definex = «(t) in (2.11) by

/
o=
0

1

u m
< : 2.12
| dx (2.12)
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Since equidistribution oM on [0, 1] is governed at timeby the condition [6]

X(&,t) 1
/ M(u(s,t))ds:é/ M (u(x, 1)) dx, (2.13)
0 0

it follows thate = «/(t) is given by
X(.)
/ M(u(s, t)) ds = 2a&. (2.14)
0

If we assume tha{tg—§| is negligible outside a steep layer then it follows from (2.11) anc
(2.14) that an element of lenglx C €2, in a smooth region of flow is related to an element
of lengthdé C Q¢ by

dx ~ 2dé&.

This shows that for the BM monitor function, withgiven by (2.12), approximately half
of the grid points will be located outside the steep layers. The grid has some similarit
to Shishkin grids that have been used extensively to solve steady singular perturba
problems (see, for example, [19]). A nodal distribution of this type is generated by t
equidistribution of the AL monitor function (2.10) whenis set equal to unity. This value
is used throughout the paper and the AL monitor function is henceforth given by (2.1
with y = 1.

2.3. Discretization of (2.8) and (2.9)
We seek approximations to the time-dependent ve¢iofs , and{v;}\.,, where
vi =vi() = v, 1) =uXx@E, b, ) (2.15)
andx; is given by (2.6). Equation (2.8) is discretized on the equispaced grid (2.4) to giv
06 =X )i = (11— U0+ 5 (@127~ (1))

_28(0i+1— Vi v —vi—1> ~0 (2.16)
Xig1 — X X — Xi—1

fori =1,2,..., N — 1, withvgandvy given by the exact solution (2.2)at= 0 andx = 1,
respectively. This discretization is second-order accurate on an even grid. The discretize
of (2.9) requires the evaluation of the monitor functignat Gy, ), and to this end we
approximatel® at (X110, 1) by

Vi1 — Vi
o= (= 2.17
i (Xi+1—xi> @17)
fori =0,1,..., N — 1. For the BM monitor functiom is given by a quadrature approxi-

mation in (2.12) as

=z
[uN

1
=) |g3|" (1 —x). (2.18)

I
o
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The approximations to the monitor functions (2.10) and (2.11)(@l;+% , 1), t) are given,
respectively, by

Miys = 1+gi2+% (2.19)
and
1 .
Mz =a+]g ™ i=01... ,N-1 (2.20)

If the spatial derivatives in (2.9) are discretized by second-order central differences on
grid (2.4) we obtain the semidiscrete system of moving mesh equations defined by

4 .
Xi :;(Mi(XiJrl_Xifl))_( .+1(X|+1—X|)— -1 06 = %i-1), (2.21)

fori=1,2,..., N —1,withxp = 0andxy = 1.
In (2.21),I\7Ii+% is a smoothed monitor function defined as in [18] by

Ni- Zk i—p Mi+1/2(9/(q + 1))|k il

: (2.22)
S o(@/(@ + 1))kl

I
Nl

whereq is a positive real number anglis a nonnegative integer. Furthermore, in (2.22) the
summations contain only those terms that are well defined kO< N — 1). The termM;
in (2.21) is given by

M|+%
— X_ %)

The solution{x;, vi }[%, is obtained using a numerical integration of the systems (2.1
and (2.21) from suitably chosen initial states. To effect the numerical integration fotp
tot = t 41 the systems of differential equations are uncoupled. Equation (2.16) is regar
as an equation ifw; }., = v in which approximations to the node locations are available ¢
t = tyandt = t,;1, and (2.21) is the governing equation far}\, = x in which M, i+ and
the term(M (Xit1 — Xi_1)) 2 are knownfoi = 1,2 ..., N — 1. Givenx andv att = t,,
the smoothed monitor function is evaluated at this value ahd the termixj.; — Xi_1) is
evaluated using approximationstatt = tn1. The approximation used is the valuexadt
t = t, or the value in the preceding cycle when an iterative approach is employed to sc
the decoupled system. The mesh is computéd=at, 1 using an implicit Euler—or first-
order BDF (BDF1)—approximation to the linearized system (2.21). The ved®then
computed at = t,; by means of a second-order singly diagonally implicit Runge—Kutt
(SDIRK) method [14]. Suppose this SDIRK method (SDIRK?2) is employed to integra
the system

(2.23)

—~
X
+
'
N\H N
+

v = f(t, V), (2.24)
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wheref: R x R™ — R™. The method is represented by the Butcher array
cla Y| v O
S=1|1-y v, (2.25)
1-y v

wherey = (2 — +/2)/2. Integration of (2.24) from = t, tot = t,,1 = t, + At, is given
by

kl = f(tn + VAtns Vn + J/Atnkl)v
k2 = f(tn + Atm Vn + (1 - V)Atnkl + VAtnk2)7 (2-26)
Vnil = Vi + At ((1 = p)ky + yKka).

Herev, denotes the value ofatt = t,,. Solution of (2.26) fok; andk is obtained using
a Newton iteration, terminating when convergence is achieved ihgmeorm to within a
tolerance KTOL, which is set atx 1076,

In the computations described in Section 3 the time gpis fixed at a valueat
throughout the integration, and in the computations described in Section 4 the second-c
method is combined with a first-order method to estimate the local error in the latter. T
error indicator is used to control the time step so that the first-order integration is carr
out to an acceptable degree of accuracyylf; is the approximation tw att = t,, 1 given
by the first-order method, the error indicator fQr, 1 is

ERR = [[Vni1 — Vnyalli.,- (2.27)

If ERR >ETOL, where ETOL is a preset error tolerance, the computed solutios &t ;
is rejected and the solution is recomputed with a smaller time-step. If ERROL, the
next time step is given by

1
ETOL) ?
© ). (2.28)

Athrl = Aty (ﬁ
In practice, a more sophisticated time-step revision is used as described in Hairer
Wanner [14]. This is given by

>, (2.29)

where maxfac is a number in the range £.5haxfac< 3,5 ~ 0.6 and minfac is set to 0.1.

The update given by (2.29) prevents rapid changes in the time step. In practical computati
the local error indicator ERR may not give an accurate indication of the global error an
may be claimed that the accepted approximation should be that given by the second-c

ET0L>5

Atni1 = At min| maxfac, maxminfa e
n+1 n X ( a% C 77< ERR
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method. The time-step control process is then simply taken to be a guide to the step
selection. This relaxation is adopted in the calculations described in Section 4.

To maximize computational efficiency, the first-order scheme thatis combined with (2.
should use the same vectomnd matrixA as those given in (2.25). An embedded first-orde
SDIRK scheme satisfying these conditions gives the approximation

\7n+l =Vn+ A'[nkl, (230)

wherek is given in (2.26). In the process of integrating (2.16) frigrto t,.; by means of
SDIRKZ2, the vectok is replaced byxn,1 — Xn)/ Aty andx is evaluated intf, t,, 1] using
the linear interpolant

X = Xn + X(t —tp). (2.31)

Herex, denotes the approximation xaatt = t,.

The initial state fox att = tg is given by integrating the moving mesh Eq. (2.21) to &
steady state, starting with an evenly spaced mesh. In this preliminary integration the e
solution (2.2) at = 0is used to evaluate the monitor function, and a steady state is assur
to be achieved when the maximum nodal deviation between meshes on two consect
time steps is less than a prescribed tolerance, MTOL. In the computations to be descr
later we choose MTOL= ¢ x 1073, If the mesh generated by this preliminary integration
of (2.21) is denoted byx; (0)}}\., = Xo then the exact solution (2.2) gives the initial values
of {vi }{Lo = Vo as{u(x; (0), 0)}{L,,.

The key steps in evolving the solution of (2.16) and (2.21) ftpto t, . ; are summarised
in theone-passlgorithm below.

ONE-PASS ALGORITHM

(i) Form initial conditionsxy andvg as described previously. Select time step and th
various parameters.:= 0

(i) Evaluate monitor function at, and obtairx, 1 from (2.21) using BDF1.

(iif) Obtain vy 1 from (2.16) using SDIRK2, witlkx andx given by (2.31).

(iv) n:=n+ 1. Go to (ii).

Some modifications of this basic algorithm are adopted in the various numerical exy
iments to be described. One useful modification is referred totasm-gpasssolution. In
this case, a return is made to step (ii) aftgr; has been obtained in step (iii): the monitor
function is evaluated at,,; andxn1 is recomputed by means of (2.21). Steps (iii) anc
(iv) are then applied. This recycle on steps (ii) and (iii) is repeated inmikipassmode
until the approximations ta att,, 1 have converged to within a tolerance MTOL in the
|0 norm. Methods of solution based on decoupling the mesh equations from the phys
PDE have been used by other authors. For example, Verwer and Blom [20] decouplec
systems. They used one pass for the mesh equations and two for the physical PDE at
time step.

We shall see in Section 4 that time-step control based entirely on the error indice
IVns1 — Vnyalli,, does not performwellin all situations. This may be because the discrepar
betweernv,1 andV,,; in (2.27) is not significant if the mesh placement is poor. In this
case, (2.28) will overestimate the permissible time step.
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3. ACCURACY CONSIDERATIONS

3.1. Interpolation Error on Initial Grid

The Appendix considers the error incurred when the function

ux) = tanh(ﬂ) 0<Xo<1, (3.1)
&

is approximatedin [0, 1] by its piecewise linear interpolant on a nonuniform grid determin
by equidistribution of the AL monitor function (2.10) and the BM monitor function (2.11
withm = 2. The error behavior as a grid is refined will depend on the choice of norm. Wh
using difference methods that are designed to resolve layers in the solution the maxin
norm is appropriate due to the need to measure the error within the layers. Other no
involve averages of the error and this smooths out rapid changes and prevents the norm
capturing the local behavior of the error within the layer. Analyses of difference schen
that exhibit uniform convergence with respect to the perturbation parameter are prese
in [16, 19], where it is shown that the appropriate norm is the maximum discrete nor
Accordingly, the linear interpolation error is measured in the norm and the errors in
discrete solutions of (2.1), (2.2) are measured if thaorm.

For the AL monitor function the tightest bound obtained in kthg norm for the error is
of the formC N1, whereC is a constant that is independentf In the case of the BM
monitor function, the corresponding bound on the err& 2.

The theoretical bounds on the linear interpolation error were checked numerically
the tanh profile given by the initial value of the exact solution (2.2). The equidistribute
grid may be determined exactly for the BM monitor function from the discrete form of th
equidistribution condition (2.13), which is

Xi 1
/ Mu(x,t))dx = § / M (u(x, 1)) dx. (3.2)
0 0

The grid is obtained by numerical solution of (3.2) for the AL monitor function. An ap
proximation to the_ ., error is obtained by computing the error at 10 evenly spaced poin
in each intervalx;, Xi;1),i =0,1,..., N — 1.

Tables | and Il show thé& , errors and the estimated convergence rates for the BM ar
AL monitor functions at several values of

TABLE |
L., Errors and Convergence Rates for the Linear Interpolant Approximating u(x, 0) in
(2.2) on Equidistributed Grid with BM Monitor Function

e=1x10" e=1x10"° e=1x10"%
N llell s Conv. rate llellL s Conv. rate llell s Conv. rate
8 9.30x 1072 1.12x 101 1.19x 10t
16 234 x 102 1.99 289 x 1072 1.96 309 x 1072 1.95
32 558 x 1073 2.07 718 x 1073 2.01 770x 1073 2.01

64 130x 1072 211 176 x 1073 2.03 190 x 1073 2.02
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TABLE Il
Results as in TABLE | Using the AL Monitor Function

e=1x10"* e=1x10° e=1x10°%
N llell s Conv. rate el s Conwv. rate llell s Conv. rate
8 137 x 101 1.72x 107 1.80x 101
16 667 x 1072 1.04 858 x 1072 1.01 961 x 1072 0.90
32 316 x 1072 1.08 422 x 1072 1.02 474 x 102 1.02
64 151 x 1072 1.07 206 x 1072 1.03 235x 1072 1.01

The results displayed in Tables | and Il enable us to anticipate the limitations on
accuracy that might be expected when the test problem (2.1), (2.2) is solved using
adaptive moving mesh method presented in Section 2. Table | shows that the interpole
error on the initial grid behaves likg/N? if the grid is generated by equidistribution of the
BM monitor function. For the AL monitor function, Table Il shows that the interpolatior
error on the initial grid behaves likeé/N. In both cases, the results suggest that the consta
C is independent oN ande, and the errors behave like the theoretical bounds that a
presented in the Appendix.

The significance of the results presented in Tables | and Il in relation to the soluti
of (2.1), (2.2) by a moving mesh method is that the anticipated error behavior is at k
O(N~1) andO(N~?) for the AL and BM monitor functions, respectively. The numerical
results presented in the following sections will vindicate these expectations.

3.2. Accuracy in Relation to Method of Solution With Fixed Time Step

Here we consider how the accuracy of the computed solution is influenced by the met
adopted to solve the semidiscrete moving mesh Eq. (2.21). Specifically, we compare
performance of thene-passalgorithm with twomultipassalgorithms. Results are presented
for both the BM and AL monitor functions witlh = 2.0 x 1073, A fixed time step is
employed, the size of which is chosen experimentally to provide comparable spatial
temporal components of the total computational error. To provide control data, we sc
the discretized PDE (2.16) on a mesh obtained by exact equidistribution of the BM moni
function at each time step. This is achieved by exact solution of (3.2)ugitht) given by
the analytic solution (2.2) at= t, 1. The replacement of step (ii) in tlme-passlgorithm
by this solution process fot, 1 gives an exactly equidistributed grid that we shall refer tc
as EEG. The test problem (2.1), (2.2) was solved over the intervat & 1.0 using the
one-passlgorithm on the EEG: maximum nodal errors and estimated convergence re
are presented in Table Ill. It may be seen that high accuracy is achieved intioem for a
time step that is large relative ¢oNote also that the maximum nodal error decays at secor
order in bothAt andN 1, which is the optimal rate of convergence for this discretization

Results presented in Table Il may be used as a benchmark against which we can me:
the accuracy of the fixed time-step adaptive scheme described in Section 2. The decot
system inx andyv is solved using thene-passandmultipassalgorithms described in Sec-
tion 2. Tables 1V, V, and VI present results four-passtwo-passandone-passlgorithms,
respectively, with equidistribution based on the BM monitor function. The temporal al
spatial smoothing parameter values used in Egs. (2.9) and (2.22)afel,q = 2.0, and
p = 3. One additional feature introduced here involves the use of a relaxation parame
w, in the determination of att = t, 4. If X}, ; denotes the value computed at step (ii) in
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TABLE Il
EEG Results for the BM Monitor Function

N (A2 el Conv. rate
32 50 582 x 1073
64 100 103 x 1073 2.50
128 200 27 x 10 2.18
256 400 555 x 10°° 2.04
512 800 138 x 1075 2.00
TABLE IV

Four-pass Algorithm with BM Monitor Function

N (At)~* lell Conv. rate Cost
32 50 658 x 1072 1.36
64 100 700 x 104 3.23 3.52
128 200 184 x 1074 1.92 12.48
256 400 503 x 10°° 1.87 48.6
512 800 132 x 10°® 1.93 207
TABLE V

Two-pass Algorithm with BM Monitor Function

N (At~ el Conv. rate Cost
32 50 534 x 10! 1.00
64 100 779x 104 9.42 1.86
128 200 513 x 1074 0.60 6.65
256 400 717 x 10°° 2.84 25.4
512 800 110x 10°° 2.70 95.2
TABLE VI

One-pass Algorithm with BM Monitor Function

N (apt lelli Conv. rate Cost
32 3200 352x 108 10.3
64 6400 703 x 10~ 2.32 39.8

128 12800 B9 x 10 1.90 159




ONE-DIMENSIONAL PDEs 383

theone-pasalgorithm then the relaxed value, 1, that is used in step (iii) is given by
Xnt1 i= wXy,q + (1 — ©)Xn, (3.3)

wherew = 0.2 throughout.

The computational costs displayed in Table IV and in all subsequent tables are the ¢
in flops of the integrations over the intervakOt < 1.0, normalized relative to the cheapest
computation in the complete set. The cheapest computation isvthipasscomputation
whose results are displayed in Table V with= 32.

The maximum nodal error in the solution given by fhar-passalgorithm is marginally
smaller than that in the solution computed on the EEG, but the convergence rate is
proaching second order from below Bsincreases andt decreases, witlN x At held
constant. In the asymptotic limit & — oo andAt — 0, the difference between the EEG
results and théour-passresults becomes negligible. The small discrepancy between t
two modes of solution can be attributed to the moderating effects of the smoothing the
incorporated in the decoupled algorithms to improve the robustness of the decoupled so

In comparison, Table V shows that the convergence behavior ofthvassalgorithm is
more erratic than that of tHeur-passalgorithm asN increases andt decreases. However,
the error in thewo-passcomputation approaches that in tleair-passcomputation aN
increases, witlN x At held constant. Note also that the computational costtafoapass
computation is approximately half that offaur-passcomputation for a specified, and
sufficiently large, value oN. The source of the erratic error behavior for Iblvand large
At is the error peak near= 0 that occurs as the grid adapts to the moving front. This errc
peak is less pronounced in the case offthe-passalgorithm.

Finally, we consider thene-passesults presented in Table VI. The low computationa
cost makes this a popular choice, especially in multidimensional computations. Howe
because of the linearization of (2.21) that involves the evaluation of the monitor functi
att = tp, it is clear that the grid predicted by tlome-passlgorithm will be based on the
numerical solution at the previous time step. In practice, this limits the maximum time s
that may be used, and the time-step restriction depends on the vadiendfon the rate
of propagation of the front. The results in Table VI confirm this defect: to obtain accura
that is comparable with thaultipassalgorithms the time step has to be reduced drasticall
Indeed, with areduction in time step by a factor of 64 the accuracy afitegasslgorithm
becomes comparable with the accuracies achieved bgtngpassand EEG computations.
Tables Ill, 1V, and VI demonstrate, however, that the additional time steps required by
one-passlgorithm to achieve this parity with thaultipassalgorithms make the former a
much more expensive mode of computation.

Tables VII-IX present results of analogous computations using the AL monitor functic
The relative performances of thaur-passtwo-passandone-passlgorithms are similar to
those produced in the computations with the BM monitor function. However, the accurac
achieved with the AL monitor function differ considerably from those achieved with tf
BM monitor function. The nodal error in the AL computations does not decay at seco
order in At and N~%: indeed, the convergence rate is slightly less than first order. Sin
the work load involved in using the AL monitor function is comparable to that for the Bl
monitor function, the efficiency of the AL computation is considerably lower than that «
the BM computation.

The results presented in this section are summarized in Fig. 1, where we show a log-
plot of thel ., error against computational cost for each of the two monitor functions in tt
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TABLE VII
Four-pass Algorithm with AL Monitor Function

N (At)~? lell Conv. rate Cost
32 200 280 x 1078 2.76
64 400 143 x 1073 0.97 11.3
128 800 794 x 104 0.85 41.6
256 1600 452 x 104 0.81 87.8
512 3200 197 x 104 1.20 318
TABLE VI

Two-pass Algorithm with AL Monitor Function

N (apt el Conv. rate Cost
32 200 284 x 1073 1.63
64 400 141 x 103 1.01 6.05
128 800 792 x 104 0.84 20.5
256 1600 4H1x 104 0.81 79.9
512 3200 197 x 10* 1.20 318
TABLE IX

One-pass Algorithm with AL Monitor Function

N (ap™ lel. Conv. rate Cost

32 1600 278 x 1072 5.66
64 3200 143 x 1073 0.96 22.2
128 6400 7 x 10+ 0.84 88.0

Nodal error

—— Al1
—— AL4
—— BM1
—— BM2
—o— BM4

10

10° 10°
Cost

FIG. 1. Cost comparison of AL and BM monitor functions for various pass strategies.
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one; two-, andfour-passmodes of operation for a range of value\bandAt. In each of
the three modes it is seen that the slope of the graph for the BM monitor function is stee
than that for the AL monitor—approximatetyl in the BM case and-0.5 in the AL case.
(The solid line indicates a slope efl.) With the exception of BM1 (BM in thene-pass
algorithm), the BM monitor function is always more efficient than the AL monitor functior
Over the range of values dd and At considered here, BM2 and BM4 are comparable
particularly for large values dfl and small values oAt.

4. TIME-STEP CONTROL

4.1. Control Mechanisms

In this section we describe numerical experiments that illustrate features which are us
in the construction of a reliable time-step control mechanism. As outlined in Section 2, tin
step control requires the availability of a reliable error indicator in the form of Eq. (2.27
The SDIRK2 scheme (2.26) and the embedded first-order SDIRK scheme (2.30) give
to the error indicator

ERR= [[Vni1 — Vnialli, = Iy Ata(kz — k) |1, (4.1)

This error indicator is utilized in (2.29) to provide time-step revision and, as intimate
immediately after (2.29), the more accurate SDIRK2 approximatigm, is carried for-
ward. Throughout this section, the temporal and spatial smoothing parameter values |
in Egs. (2.9) and (2.22) are= 0.1, q = 2.0, andp = 3; the error control parameter val-
ues in (2.29) are minfae: 0.1, maxfac= 2.0, andn = 0.64, and the singular perturbation
parametee is set at 20 x 1073,

In Table X and Fig. 2, we present numerical results for the BM monitor function usir
thefour-passalgorithm. It can be seen that the nodal error is comparable to that in Table
where an appropriate fixed time-step was selected a priori. The results in Table X den
strate second-order convergence with respectttand N—1. However, there are several
unsatisfactory aspects to these results. First, the computational cost is higher in Tab
than in Table IV. Second, as seen clearly in the inset in Fig. 2, the mesh points do
follow smooth trajectories as time evolves. Third, the time-step history displayed in Fig
is highly erratic. While these factors do not have a significant effect on the nodal error
this computation, they are undesirable—diminishing the robustness of the time-step cotr
mechanism and reducing the overall efficiency of the algorithm.

TABLE X
Four-pass Algorithm with BM Monitor Function and Time-step
Control Applied Only to the Physical PDE: Aty = 1/400

N ETOL el Conwv. rate Cost
32 500x 10 3.76x 1072 5.88
64 125x 104 7.37x 10 2.35 10.7
128 300x 10* 1.96 x 104 1.91 35.3
256 750 x 1078 5.15x 10°° 1.93 76.6

512 200 x 107° 1.36 x 10°° 1.92 263
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FIG. 2. Mesh trajectories, error, and time-step history for BM monitor, four-pass algorithm, with time-ste
control for physical PDE only.

Numerical experiments suggest that the reason for the poor performance of the time-
control mechanism used for Table X and Fig. 2 is its lack of consideration for the accur:
of the grid point location. It has been observed by several authors (see, for example,
that it is not necessary to determine the grid with the same level of accuracy as the phy:
solution. Consequently, small errors in the solution of the physical PDE may coexist w
larger errors in the grid location. Time-step control based solely on the accuracy of
solution of the physical PDE is likely, therefore, to be insensitive to any deterioration
the grid. This problem has been identified by Bletral. [5] where, to compensate for a
lack of control of the grid accuracy, the following modifications are made: if at time
a time-step failure occurs then not only is the current solutigni( v,.1) rejected but so
also is the solution at the previous step; t,. Furthermore, in the steps immediately after
the time-step failure additional constraints are imposed to prevent the time-step size f
increasing too rapidly and giving rise to additional time-step failures. Figure 3 prese
numerical results for the computation displayed in Fig. 2, with these additional time-st
constraints imposed. It may be seen that some of the unsatisfactory aspects of the re
presented in Fig. 2 have been alleviated. The mesh trajectories are significantly smoc
than in Fig. 2 (see the inset in Fig. 3) and the erratic behavior of the time-step history |
been reduced. However, the computational cost is comparable to that incurred for Fic
this being a penalty brought about by the large number of time-step failures.

An alternative approach to that adopted by Bletral. [5], is to incorporate additional
measures of the mesh accuracy into the time-step control mechanism.nfaltipass

1 g9 107
7
08
6 1072
3
05 55 8
@ 3 a
g =4 £107
B @
04 / 3 E
2 107
02
1
0 TTTTTTTITTiTET [’) 10-5
0 02 04 06 08 1 (] 02 04 06 08 1 0 02 04 06 08 1
X time time

FIG. 3. Mesh trajectories, error, and time-step history for BM monitor, four-pass algorithm, with time-ste
control for physical PDE and mesh as in Blatal. [5].
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TABLE Xl
Four-pass Algorithm with BM Monitor Function and Modified
Time-step Control: Aty = 1/400

N ETOL el Conv. rate Cost

32 500x 10 3.06 x 1073 3.95

64 125x 104 6.92 x 1074 2.15 6.46
128 300x 10°° 1.88x 1074 1.90 20.1
256 750 x 10°¢ 5.09x 10°° 1.88 56.1
512 200 x 10 1.35x 10°° 191 210

algorithm, a simple indication of the accuracy of the grid may be provided cheaply by
mesherr = [Xn11 — Kntalli. (4.2)

wherex,,; denotes the final mesh at t,,; andX,;1 denotes the mesh at the previous
pass in the algorithm. If mesérr > MESH_TOL, where MESHTOL is a user-prescribed
error tolerance, then the solutiontat t, 1 is rejected and the computation is repeatec
using a smaller time step. If meshr < MESH_TOL then the next time step is computed
as

(4.3)

. . log(mesherr)
Atn 1 = Aty x min{ maxfag max| minfac ,

log (MESH.BAL)

where MESHBAL is a user-chosen parameter satisfying MEBAL < MESH.TOL. A
value forAtn, 1 is also computed using (2.29) and the smaller of the two values is adopt

Table Xl and Fig. 4 show revised results using the modified time-step control mechan
with MESH.TOL = 0.6e and MESHBAL = 0.3¢. As can be seen, the nodal errors incurrec
are comparable with those displayed in Table IV. A comparison of Tables X and XI sho
that the introduction of the additional time-step control has brought about a signific:
reduction in computational cost and the number of time-step failures has been reduce
zero. The computational cost in Table Xl is comparable with that in Table IV. Furthermo
the mesh trajectories are now much smoother (see the inset in Fig. 4) and the time-stef
settles down to an appropriate value of approximatedy>610-3.

1 8 10
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os 85 3
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- ® °
0.4] <3| E
2 107
0.2
1
o T TITTII o 107
0 0.2 04 06 0.8 1 (1] 0.2 04 0.6 0.8 1 0 02 04 0.6 08 1
x time time

FIG. 4. Mesh trajectories, error, and time-step history for BM monitor, four-pass algorithm, with time-ste
control for the physical PDE and mesh.
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TABLE Xl
Four-pass Algorithm with AL Monitor Function and Modified
Time-step Control: Aty = 1/400

N ETOL 1ellio Conv. rate Cost

32 500 x 107 2.84x 1073 2.28

64 250x 104 1.47x 1073 0.95 5.69
128 100 x 10 7.93x 10 0.89 19.6
256 500 x 10°° 4.44 x 107* 0.84 50.8
512 250 x 10°° 1.88x 10 1.24 164

Results are also presented for the AL monitor function in Table XlI, withfole-pass
algorithm and the modified time-step control mechanism (all parameters are as in the
case). Once again, we see good agreement, with respect to nodal error and convergenc
between these results and the corresponding fixed time-step results presented in Table
Note that the computational cost of the variable time-step algorithm with the AL monit
function is significantly less than that of the corresponding fixed time-step algorithm.

4.2. Tracking the Front as It Leaves the Domain

It is well known that additional numerical difficulties are encountered if we attempt 1
track the front as it leaves the domain [18]. For the test problem (2.1), (2.2), this occur:
t = 1.5 and it provides a good test of the robustness ofhthéipassalgorithm.

Figures 5 and 6 show numerical results for the BM and AL monitor functions, wit
time-step control based on error indicators for the solution of the physical PDE and
mesh as for Table XI and Fig. 4. Parameter values are chosen as in Section 4.1. In |
cases, we see that as the front approaches the righthand boundary of the domain, the
error increase induces multiple time-step failures, and this causes the time-step size tc
by two orders of magnitude. The increase in error is due, in part, to a spatial compor
that cannot be eliminated by a reduction in the time-step size and, as a consequence,
rise in error is inevitable. As the front leaves the domain, the contributign’pfo the
AL monitor function diminishes. This means that the constant floor in (2.10) becom
dominant and this results in a rapid propagation of mesh points to the left to produc
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FIG. 5. Mesh trajectories, error, and time-step history for BM monitor, four-pass algorithm, with time-ste
control for physical PDE and mesh. Front leaving the domain.
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FIG. 6. Mesh trajectories, error, and time-step history for AL monitor, four-pass algorithm, with time-ste
control for physical PDE and mesh. Front leaving the domain.

uniform grid. This transformation of the grid occurs in a very small time frame of arder
and it causes additional numerical difficulties since terms in (2.8) that depend on the ir
velocity x become very large. For the AL monitor function, the error increases by a fact
of six to 831 x 1072 as the front leaves the domain. In contrast, the flodn the BM
monitor function is automatically rescaled as thé contribution to the monitor function
diminishes. This results in a much smoother transformation to a uniform grid. The eff
of this smoother transition is that the nodal error for the BM case is much smaller, peak
at 156 x 103, approximately double the error before the influence of the boundary is fe
In both examples, the dramatic reduction in the time-step size causes large increases |
computational costs.

5. CONCLUSIONS AND COMMENTS

The one-dimensional Burgers’ equation has been used to elucidate several aspects
solution of moving mesh partial differential equations. The moving mesh method usec
the numerical experiments is one of those proposed by Hatab[9] and it is based on
the equidistribution of a monitor function. By considering the familiar arc-length monitc
function and one proposed by Beckett and Mackenzie [2, 3] it has been shown that the ch
of monitor function has a significant influence on the accuracy of the computed results.
particular interest is the demonstration that optimal convergence rates can be achieve
methods based on the Beckett and Mackenzie monitor function. These results are in
with predictions based on an analysis of the error incurred when the initial function
approximated by its piecewise linear interpolant on a nonuniform grid that is generatec
equidistribution.

The moving mesh partial differential equations were solved by decoupling the me
equations from the physical PDE. An algorithm has been presented that uses a first-c
BDF method for the time integration of the linearized mesh equation and a second-ol
singly diagonally implicit Runge—Kutta (SDIRK) method for the physical PDE. It ha
been shown that the efficiency, accuracy, and robustness of the moving mesh equatiol
depend on the method that is adopted for the solution of the decoupled system. Nume
experiments using a fixed time step have shown how an efficient and accurate solu
algorithm can be constructed. Finally, time-step control mechanisms were considered &
robust and efficient method presented that makes use of error indicators for the accura
the grid and the accuracy of the solution of the physical PDE. Work is being completed
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extending the algorithm to deal with problems in two space dimensions [4], and this wc
will be presented elsewhere.

APPENDIX

Interpolation Error on a Nonuniform Grid
In this section we consider the error incurred when the function

u(x) = tanh(ﬂ), 0<x<1,
£

is approximated by its piecewise linear interpolari). To begin with, we shall assume
that the nonuniform mesh is generated by equidistributing the solution arc-length. Fr
the definition of the interpolant it is clear that there exists a positive constahiat is
independent ofi(x) ande such that

Xj
lellL oo ) = Max |u(x>—u(x)|scl/ 1000 dx.
X€E(Xj-1,Xj) Xj_1

Using the equidistribution principle we have

Xj Xj 1
/ Ju'(x)] dx < / V14 U (x)2dx = %/ V14 (U (x)?dx < %
Xj-1 Xj-1 0

wherec; is independent of. Hence, there exists@, independent oN ande, such that
lellL.on < CN™™

Equidistribution of the solution arc-length therefore leads to a mesh that results is a sut
timal rate of convergence. Numerical experiments confirm that this estimate is sharp.

The second monitor function we consider is similar to that used by Beckett and Macker
[2, 3] for singularly perturbed boundary value problems. The monitor takes the form

1
M(X) = a + [u'(x)|Y?, a:/ U’ (x)|Y? dx.
0

From standard interpolation theory there exists a positive consf#émt is independent of
u(x) ande such that

2
lellLwxi_1x) < €3h5IU" ()l

wheren; € (Xj_1, Xj). Furthermore, we have

1

U] < e7HU ()] < Cae™" _inf U],

€(Xj-1,Xj)

where

Cy = max( sup |u”(x)|h,—>.

XE(Xj-1,Xj)
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Using the global equidistribution principle we therefore have

2
-1 H 1/2
lellL oo 1.x) < Cs€ ( inf Ju'(xp)|Y hj>

X€(Xj-1,X})

X
< cset /
y

j-1

2

/renil/2 [ 2a 2
a+ |U'(s)|7 ds| =cse N/

wherecs = c3c4. Finally, we have

1
o= / [U'(s)|Y?ds < cge™?.
0

Hence, there exists@, independent oN, such that

)
lellL. o1 < CN™.

Note that the constants andcg are independent af. Numerical experiments suggest that

Cs

10.

11.

12.
13.

14.
15.

and hence& are alsce independent.
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